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Improved Runge-Kutta Methods for Solving Ordinary Differential Equations
 (Penambahbaikan Kaedah Runge-Kutta untuk Menyelesaikan Persamaan Pembezaan Biasa)

FARANAK RABIEI, FUDZIAH ISMAIL* & MOHAMED SULEIMAN

 ABSTRACT

In this article we proposed three explicit Improved Runge-Kutta (IRK) methods for solving first-order ordinary differential 
equations. These methods are two-step in nature and require lower number of stages compared to the classical Runge-
Kutta method. Therefore the new scheme is computationally more efficient at achieving the same order of local accuracy. 
The order conditions of the new methods are obtained up to order five using Taylor series expansion and the third and 
fourth order methods with different stages are derived based on the order conditions. The free parameters are obtained 
through minimization of the error norm. Convergence of the method is proven and the stability regions are presented. 
To illustrate the efficiency of the method a number of problems are solved and numerical results showed that the method 
is more efficient compared with the existing Runge-Kutta method.

Keywords: Convergence and stability region; improved Runge-Kutta methods; order conditions; ordinary differential 
equations; two-step methods

ABSTRAK

Dalam artikel ini kami mencadangkan tiga kaedah Runge-Kutta tak tersirat penambahbaikan untuk menyelesaikan 
persamaan pembezaan peringkat pertama. Kaedah ini adalah dalam bentuk dua langkah dan memerlukan bilangan 
tahap yang kurang berbanding kaedah Runge-Kutta klasik. Maka kaedah yang baru ini adalah lebih cekap bagi 
mencapai peringkat kejituan setempat yang sama. Syarat peringkat untuk kaedah ini hingga peringkat kelima diterbitkan 
menggunakan kembangan siri Taylor dan kaedah peringkat ketiga dan keempat dengan tahap yang berbeza diterbitkan 
berdasarkan syarat peringkat tersebut. Parameter bebasnya diperoleh melalui norma ralat yang diminimumkan. 
Penumpuan kaedah ini dibuktikan dan kestabilannya dipersembahkan. Untuk menunjukkan kecekapan kaedah ini, 
beberapa masalah diselesaikan dan keputusan berangka menunjukkan kaedah ini lebih cekap berbanding kaedah 
Runge-Kutta sedia ada.

Kata kunci: Kaedah dua langkah; penambahbaikan kaedah Runge-Kutta; penumpuan dan rantau kestabilan; persamaan 
pembezaan biasa; syarat peringkat

INTRODUCTION

Consider the numerical solution of the initial value problem 
for the system of ordinary differential equation:

	

	

(1) 

	 One of the most common methods for solving 
numerically (1) is Runge-Kutta (RK) method. Most 
efforts to increase the order of RK method have been 
accomplished by increasing the number of Taylor’s series 
terms used and thus the number of function evaluations. 
The RK method of order has a local error over the step size 
h of O(hp+1). Many authors have attempted to increase the 
efficiency of RK methods by trying to lower the number 
of function evaluations required. As a result, Goeken 
and Johnson (2000) proposed a class of Runge-Kutta 
method with higher derivatives approximations for the 
third and fourth-order method. Xinyuan (2003) presented 

a class of Runge-Kutta formulae of order three and four 
with reduced evaluations of function. Phohomsiri and 
Udwadia (2004) constructed the accelerated Runge-
Kutta integration schemes for the third-order method 
using two functions evaluation per step. Udwadia and 
Farahani (2008) developed the higher orders accelerated 
Runge-Kutta methods. However most of the methods 
presented are obtained for the autonomous system while 
the Improved Runge-Kutta methods (IRK) can be used for 
autonomous as well as non-autonomous systems. Rabiei 
and Ismail (2011) constructed the third-order Improved 
Runge-Kutta method for solving ordinary differential 
equation without minimization of the error norm. The IRK 
methods arise from the classical RK methods, can also be 
considered as a special class of two-step methods. That 
is, the approximate solution yn+1 is calculated using the 
values of yn and yn–1. The IRK method introduces the new 
terms of k–i, which are calculated using ki, (i > 2) from the 
previous step. The scheme proposed herein has a lower 
number of function evaluations than the RK methods. 
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GENERAL FORM OF IRK METHOD

The proposed IRK method in this paper with s-stage for 
solving (1) has the form:

	 	 (2) 

For  0 ≤ α ≤ 1, 1 ≤ n ≤ N – 1, where
	
	 k1 = f (xn, yn),
	
	 k–1 = f (xn–1, yn–1),

	 ki = f (xn + cih, yn + k j      )  ,  2 ≤ i ≤ s.

	 k–i = f (xn–1 + cih, yn–1 + k–j),  2 ≤ i ≤ s.  

 
for c2 … cs ∈[0, 1] and f depends on both x and y while ki 
and k–i depend on the values of kj and k–i for j = 1,…, i–1. 
Here s is the number of function evaluations performed at 
each step and increases with the order of local accuracy 
of the IRK method. In each step we only need to evaluate 
the values of k1, k2, …,

 
while k–1, k–2, …are calculated from 

the previous step. The accelerated Runge-Kutta method 
by Udwadia and Farahani (2008) is derived purposely for 
solving autonomous first order ODEs where the stage or 
function evaluation involved is of the form ki = f (y(xn + 
hai–1ki–1))  where ki–1 is a function of y only and the term 
involved only ki–1. There are two improvements done here, 
the first one is the function f is not autonomous, thus the 
method is not specific for yʹ = f (y(x)), but it can be used for 
solving both the autonomous equations as well as the more 
general differential equations yʹ = f (x,y(x)). The second 
improvement is that the internal stages ki and k–icontain 

more k values which are defined as   for i = 2, …, s, 

compared to the Accelerated Runge-Kutta method in which 
their methods contain only one k value. This additional  k 
values aimed to make the methods more accurate. Note 
that IRK method is not self-starting therefore a one-step 
method must provide the approximate solution of y1 at 
the first step. The one-step method must be of appropriate 
order to ensure that the difference y1 – y(x1) is order of p or 
higher. In this paper, without loss of generality we derived 
the method with α = 0, so the explicit IRK method can be 
represented as follows:

	 yn+1 = yn + h(b1k1 – b–1k–1 + (ki – k–i)), 
	
	 for 1 ≤ n ≤ N – 1,	 		  (3)
	
where:

	 k1 = f (xn, yn),

	 k–1 = f (xn–1, yn–1),

	 ki = f (xn + cih, yn + k j      )  ,         2 ≤ i ≤ s,

	 k–i = f (xn–1 + cih, yn–1 + k–j),   2 ≤ i ≤ s.

 
It is convenient to represent (3) by Table 1. 

TABLE 1. Table of coefficients for explicit IRK 
method (α= 0)

0
c2 a21

c3 a31 a32

.

.

.

.

.

.

.

.

.

.

.

.
cs as1 as2 . . . ass-1

b-1 b1 b2 . . . bs-1 bs

ORDER CONDITIONS

Third order method with two-stage:   For s = 2, the general 
form of the method is given by,

	 yn+1 = yn + h(b1k1 – b–1k–1 + b2(k2 – k–2)),

	 k1 = f (xn, yn),

	 k–1 = f (xn–1, yn–1),

	 k2 = f (xn + c2h, yn + ha21k1),
	
	 k–2 = f (xn–1 + c2h, yn–1 + ha21k–1).		  (4) 

where 0 ≤ c2 ≤ 1. In the derivation of the method we will 

use ci =    which is called the row sum condition of 

RK method, so here we have c2 = a21. Consider (1) we have:

	 yʹ = f (x, y), y̋ = fx + ffy,	

	 y̋ = fxx + 2fxy + fyy f 
2 + fy( fx + ffy ).		  (5) 

	 The values of yʹ(x), y̋(x), … are obtained by 
substituting x = xn. The Taylor’s series expansion of 
y(xn + h) up to O(h4) is given by:
 
	 yn+1 = y(xn + h) = y(xn) + hyʹ(xn) + y̋(xn)

	 y̋(xn) + O(h4).		  (6) 

Substituting (5) into (6) we have  

	 yn+1 = yn + fh +  (fx + ffy)
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	 +  (fxx + 2fxy f + fyy  f 
2 + fy  fx + f     )

	 + O(h4).	 (7)

	 Define F = fx + ffy, G = fxx + 2fxy + fyy f 
2, 

  
thus from 

formulas given in (5) we have y̋ = F, y̋ = G + fyF. 
 
After 

simplifying, (7) can be written as follows: 

	 yn+1 – yn = hf  + F +  (G + fyF) + O(h4).	 (8) 
 
	 By using the Taylor’s series expansion of k1, k2, k–1 
and  k–2 which are used in (4) we have:

	 k1 = f,

	 k–1 = f + hF + + (G + fyF) + O(h3),

	 k2 = f + hc2F + ( G) + O(h3),

	 k–2 = f – h(1 – c2) F + ((1–c2)
2G+(1–2c2)fyF) 

	 + O(h3),
 
Substituting the above formulas into (4) we obtain:
 
	 yn+1 – yn = h(b1 – b–1) f + h2 (b–1 + b2) F

	 + (–b–1 – (1 – 2c2)b2) (G + fyF)

	 +O(h4).		  (9)

	 By comparing (9) with (8) in terms of power of h, we 
obtained the following order conditions up to O(h4) 

First order: 	 b1 – b–1 = 1,

Second order:	 b–1 + b2 = ,

Third order: 	 b2c2 = ,
 
Third order method with three-stage:   For s=3, the general 
form of IRK can be written as:

	 yn+1	= yn + h(b1k1 – b–1k–1 + b2(k2 – k–2)

		  + b3(k3 – k–3)),

	 k1 = f (xn, yn),

	 k–1 = f(xn–1, yn–1),
	
	 k2 = f (xn + c2h, yn + ha21k1),

	 k–2 = f(xn–1 + c2h, yn–1 + ha21k–1),

	 k3 = f (xn + c3h, yn + h(a31k1 + a32k2)),

	 k–3 = f(xn–1 + c3h, yn–1 + h(a31k–1 + a32k–2)).	 (10) 
 
where c2, c3 ∈ [0, 1]. Also we considered c2 = a21, c3 = 
a31 + a32.  The Taylor’s series expansion of k3 and k–3  are 
given as follows: 

	 k3	 = f + hc3F + ( c3
2G + 2c2a32fyF) + O(h3),

	 k–3	= f – h(1 – c3) F +  ((1 – c3)
2 G 

		
		  + (–2c3 + 2c2a32 + 1) fyF) + O(h3).

	 Substituting the values of ki and k–i, i = 1, 2, 3, into 
(10), we have: 

	 yn+1 – yn = h(b1 – b–1) f + h2(b–1 +b2 + b3) F

	 + (–b–1–(1–2c2)b2 – (1–2c3)b3)

	 (G + fyF) + O(h4).		  (11)

	 Comparing (11) with (8) in terms of power of h we 
obtained the following order conditions up to O(h4) for the 
method with three function evaluations per step.

First order: 	 b1 – b–1 = 1,

Second order: 	  b–1 + b2 + b3 = ,

Third order: 	 b2c2 + b3c3 = ,
 
	 Using the same procedure we obtained the order 
conditions of the method up to order five which are 
presented in Table 2.

CONVERGENCE

The IRK method given in (3) can be written as: 

	
(12)

	 For 1 ≤ n ≤ N – 1,  where I is an m by m identity matrix. 
We can write (12) as:

	 	 (13) 

where  Q is the 2m by 2m block 

matrix given by:

	 Q = 	 (14) 

and  is define by:
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	 	 (15) 
will assume that IRK method is stable and that as h tends 
to zero, 

 
tends to zero, where x0 is the initial 

value and x1 = x0 + h. Note that throughout the stability 
and convergence analysis, all norms denote the infinity 
norm  

Lemma 1 : For any (xn, y(xn)), (xn, yn) in the region D 
defined by

	 D = {(x, y)x∈[x0, X], –∞ < y < ∞}.

	 If f is a Lipschitz continuous function such that, 
 then  is a Lipschitz 

continuous function, and ≤ 
 where L,  are constants.

Proof. First, we will show by induction that 

	
	 1 ≤ j ≤ s,	 (17)

where g  j are constant. For j = 1 we have:

	

	 We set g  j = L. Assuming inequality (17) is true for 
j = i – 1, we have:

	

	

	

	

where   Hence, inequality (17) holds 

for j = i  and, therefore, it holds for 1 ≤ j ≤ s. Similarly we 

can show that: 

	
	 (18)

for 1 ≤ j ≤ s. Function Φ can be written as

TABLE 2. Order conditions of IRK method up to order five

Order of Method Order Conditions
First order b1 – b–1 = 1,

Second order b–1 + 

Third order

Fourth order

Fifth order

	 We defined y(xn) as the true solution and yn is the 
approximate solution so we can write y(x0) = y0 and  y(x1) 
= y1 + e0, for e0 > 0. In general we have: 

	

for 1 ≤ n ≤ N – 1, which can be written as: 

	
	
	 1 ≤ n ≤ N – 1,	 (16) 

where  To prove the convergence of the method, 

we used the following lemma and theorems to find the 
bound for while  →0 as h→0, 
here y(xn) is the true solution of (1). In order to do this, we 
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	 Φ = b1k1 – b–1k–1 + (ki – k–i) 

		  =   where b–i = bi, 2 ≤ i ≤ s

		  = Φ1 – Φ–1.

Using inequality (17), we can write

	

Similarly, using inequality (18) we can write 

	

Since 

	  

we have:

	

	

	
  

Because

	  
we have:

	

Therefore:

	

	
	
	

where  Thus, Lemma 1 is proven. 

Theorem 1: Suppose that a IRK method of order p is used 
to solve (1), and that f is Lipschitz continuous function, the 
method is stable and

	  

	

where  

Proof: Subtracting (16) from (13) we have 

	
 
	 For 1 ≤ n ≤ N – 1. Taking the infinity norm and using 
the Lipschits condition on  (Lemma 1), we can write 

	 	 (19)

	 From (14) we have after some simplification 
we can write (19) as follows:

	 	 (20)

	 In the following, we will use the inequality 1 ≤ 1 ≤ 
u ≤ eu for u ≥ 0 which follows from the expression eu = 1 
+ u + u2 +… . Now, for 2 ≤ n ≤ N, we can write (20) as 
follows: 

	

Since xn+1 – x1 = nh and xn+1 – xm+1 = (n – m)h, we have:

	

	  

So we have:

	 	 (21) 
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Since for 1 ≤ m ≤ n – 1, 

	

Now, we can write (21) as follows: 

	

	

	

	 	 (22) 

	 Since  and  from 
(22) we have:

	

	 2 ≤ n ≤ N,		  (23)

where  M = Therefore, Theorem 1 
is proven. 

Theorem 2: Consider the IRK method of order p is used 
to solve (1) where f is a sufficiently smooth Lipschitz 
continuous function, if the approximate solution y1 at x1   is accurate to O(hq+1), the method is convergent to order 
min (p, q), and 

	

	 2 ≤ n ≤ N,

where M =  

Proof: For IRK method of order p, εm = O(hp+1), for  1 ≤ m 
≤ n – 1. The approximate solution y1 at x1 which is required 
by the IRK method is provided by a one-step method such 
as Runge-Kutta method. If y1 is accurate of order q, that is, 

using inequality (23) we have:

	

	 2 ≤ n ≤ N,

whe re  M  =   I n  pa r t i cu l a r, 
 as h → 0 and Theorem 2 is proven. 

 DERIVATION OF THE METHODS

Using the order conditions in Table 2, we derived the 
IRK methods of orders p = 3 and p = 4. To determine the 
free parameters of the third and fourth order methods we 
minimized the error norm for the methods of order 4 and 
5, respectively. Hence, the third order method (IRK3) with 
two stages (p = 3, s = 2) and fourth order method with 
three stages p = 4, s = 3) are obtained. Then, by satisfying 
as many equations as possible, for the fifth order method, 
we obtain the optimized fourth order method with 4-stages 
(p = 4, s = 4) which is denoted by IRK4-4 method. The 
coefficients of methods IRK3, IRK4 and IRK4-4 methods 
are presented in Table 3. In the last section, to illustrate 
the efficiency of the methods we compared the numerical 
results with Butcher’s Runge-Kutta methods of order 2, 
3 and 4 which are denoted as RK2, RK3, and RK4 methods 
(Butcher 2008).

STABILITY

To find the stability region, the method is applied to the 
test problem yʹ= λy. Here, for s = 2 we have 

	 yʹ= λy,

	 k1 = λyn,             k–1 = λyn–1,

	 k2 = λ(1 + λha21)yn,   k–2 = λ(1 + λha21)yn–1.

	 Substituting all the above values into (4) we have: 

	 	 (24) 

where . Substituting yn+1 = ζ2, yn = ζ, the following 
stability polynomial is obtained for the method of order 
three (IRK3): 

	 	 (25) 
 
	 Using the same procedure, the stability polynomial 
for fourth order method (IRK4) is given by:

	 	 (26) 

and the stability polynomial for the optimized fourth order 
method (IRK4-4) is: 

	 	 (27) 
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	 Stability region of the methods is the set of values of 
 such that all the roots of stability polynomial are inside 

the unit circle. Here, the stability region of IRK3, IRK4 and 
IRK4-4 methods are plotted in Figures 1 and 2 and found to 
be slightly smaller then the stability region of the existing 
RK methods.

NUMERICAL EXAMPLES

In this section, we tested a standard set of initial value 
problems to show the efficiency and accuracy of the 
proposed methods. The exact solution y(x) is used to 
estimate the global error as well as to approximate the 
starting values of y1 at the first step x1. The following 
problems are solved for x ∈[0, 10].

Problem 1:	

Exact solution:  y(x) = 

Source: Udwadia and Farahani ( 2008) 

Problem 2:	(an oscillatory problem)
		  yʹ = y cos(x),   y(0) = 1,

Exact solution:  y(x) = esin(x).
Source: Hull et al. (1982)

Problem 3: (1-body gravitational problem with eccentricity 
e = 0)

	 	

Exact solution:  y1(x) = cos(x), y2(x) = sin(x). 
Source: Hull et al. (1982)

	 The number of function evaluations versus the 
log(maximum global error) for the tested problems are 
shown in Figures 3-5.

DISCUSSION AND CONCLUSION

From Figures 3-5, we observe that IRK3 with the same 
number stages is more accurate compared with RK2 , IRK4 
with three stages gives smaller error than RK3 also IRK4-4 

TABLE 3. Coefficients of IRK3, IRK4 and IRK4-4 methods

0
0

0 0

IRK3 IRK4 IRK4-4

FIGURE 1. Stability region of IRK3 (thin line) and RK3 
(thick line) for 

FIGURE 2. Stability region of IRK4 (thin line), IRK4-4 
(thin dash line) and RK4 (thick line) for 
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FIGURE 3. Maximum global error versus number of function evaluations for problem 1

Lo
g 10

 (m
ax

 g
lo

ba
l e

rr
or

)

Function evaluations

FIGURE 4. Maximum global error versus number of function evaluations for problem 2
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FIGURE 5. Maximum global error versus number of function evaluations for problem 3
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with the same number of stages compared with RK4 is more 
accurate. Therefore, for all the problems the new methods 
produced better accuracy for the same number of function 
evaluations compared to the existing methods.
	 In this paper, the order conditions of the IRK method up 
to order five are derived. Based on these order conditions, 
we obtained IRK methods of order three and four with 
different stages. Convergence and stability region of 
the proposed methods are given. From the numerical 
results, we observed that for the same order of error, IRK 
methods with less number of stages require less number 
of function evaluations which leads to less computational 
time for approximating numerical solutions of problems 
compared with the existing RK methods. Therefore, we 
can conclude that IRK methods are computationally more 
efficient compared with the existing RK methods.
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